
[KICSV Special AI Lecture]
Mathematics for AI - Theory into Practice

Sunghee Yun

Co-Founder & CTO @ Erudio Bio, Inc.
Co-Founder & CEO @ Erudio Bio Korea, Inc.

AI-Korean Medicine Integration Initiative Task Force Member @
The Association of Korean Medicine

Global Leadership Initiative Fellow @ Salzburg Global Seminar
Adjunct Professor & Advisory Professor @ Sogang Univ. & DGIST

https://sungheeyun.github.io/
https://www.erudio.bio/
https://www.akom.org/
https://www.salzburgglobal.org/

Sunghee Yun Oct 06, 2025

About Speaker

• Co-Founder & CTO @ Erudio Bio, Inc., San Jose & Novato, CA, USA

• Co-Founder & CEO @ Erudio Bio Korea, Inc., Korea

• Leader of Silicon Valley Privacy-Preserving AI Forum

• AI-Korean Medicine Integration Initiative Task Force Member @ The Association of

Korean Medicine

• KFAS-Salzburg Global Leadership Initiative Fellow @ Salzburg Global Seminar, Austria

• Adjunct Professor, Electronic Engineering Department @ Sogang University, Korea

• Advisory Professor, Electrical Engineering and Computer Science @ DGIST, Korea

• Global Advisory Board Member @ Innovative Future Brain-Inspired Intelligence System

Semiconductor of Sogang University, Korea

• Technology Consultant @ Gerson Lehrman Gruop (GLG), NY, USA

• Chief Business Development Officer @ WeStory.ai, Cupertino, CA, USA

• Advisor @ CryptoLab, Inc., San Jose, CA, USA

• Co-Founder & CTO / Head of Global R&D & Chief Applied Scientist / Senior Fellow @

Gauss Labs, Inc., Palo Alto, CA, USA 2020 ∼ 2023

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice 1

Sunghee Yun Oct 06, 2025

• Senior Applied Scientist @ Amazon.com, Inc., Vancouver, BC, Canada ∼ 2020

• Principal Engineer @ Software R&D Center, DS Division, Samsung, Korea ∼ 2017

• Principal Engineer @ Strategic Marketing & Sales Team, Samsung, Korea ∼ 2016

• Principal Engineer @ DT Team, DRAM Development Lab, Samsung, Korea ∼ 2015

• Senior Engineer @ CAE Team, Samsung, Korea ∼ 2012

• PhD - Electrical Engineering @ Stanford University, CA, USA ∼ 2004

• Development Engineer @ Voyan, Santa Clara, CA, USA ∼ 2001

• MS - Electrical Engineering @ Stanford University, CA, USA ∼ 1999

• BS - Electrical & Computer Engineering @ Seoul National University 1994 ∼ 1998

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice 2

Sunghee Yun Oct 06, 2025

Highlight of Career Journey

• BS in EE @ SNU, MS & PhD in EE @ Stanford University

– Convex Optimization - Theory, Algorithms & Software

– advised by Prof. Stephen P. Boyd

• Principal Engineer @ Samsung Semiconductor, Inc.

– AI & Convex Optimization

– collaboration with DRAM/NAND Design/Manufacturing/Test Teams

• Senior Applied Scientist @ Amazon.com, Inc.

– e-Commerce AIs - anomaly detection, deep RL, and recommender system

– Jeff Bezos’s project - drove $200M in additional sales via Amazon Mobile Shopping

App

• Co-Founder & CTO / Global R&D Head & Chief Applied Scientist @ Gauss Labs, Inc.

• Co-Founder & CTO - AI Technology & Business Development @ Erudio Bio, Inc.

• Co-Founder & CEO - AI Technology & Business Development @ Erudio Bio Korea, Inc.

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice 3

Sunghee Yun Oct 06, 2025

Today

• Machine Learning Prerequisites - 5

– linear algebra basics, calculus basics, statistics basics

– discrete random variables, continuous random variables

• Machine Learning Basics - 53

– optimal estimator, bias & variance, MLE, MAP, Bayesian inference

– ML - supervised learning, unsupervised learning, reinforcement learning, formulations

– DL - CNN, RNN

– DNN training using SGD with backpropagation

• Studying AI - 95

– tips, some books, online courses, Andrew Ng!

• Appendix

– Reinforcement Learning - 100

• Selected references - 162

• References - 164

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice 4

ML Prerequisites

Linear Algebra Basics

Sunghee Yun Oct 06, 2025

Scalars, vectors, and matrices

• real number a ∈ R, called scalar

• (ordered) collection of real numbers (a1, . . . , an) ∈ Rn, called vector
a1
a2
...

an

 ∈ Rn - column vector

[
a1 a2 · · · an

]
∈ R1×n

- row vector

• (ordered) collection of 2-dimensional array, called matrix
A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

Am,1 Am,2 · · · Am,n

 ∈ Rm×n

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Linear Algebra Basics 7

Sunghee Yun Oct 06, 2025

Transposes

• transpose of row vector is column vector & vice versa

[
a1 a2 · · · an

]T
=


a1
a2
...

an

 &


a1
a2
...

an


T

=
[
a1 a2 · · · an

]

• transpose of m-by-n matrix is n-by-m matrix
A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

Am,1 Am,2 · · · Am,n


T

=


A1,1 A2,1 · · · Am,1

A1,2 A2,2 · · · Am,2
...

A1,n A2,n · · · Am,n

 ∈ Rn×m

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Linear Algebra Basics 8

Sunghee Yun Oct 06, 2025

Matrix-vector multiplication

• for matrix A ∈ Rm×n & vector b ∈ Rn

– matrix-vector multiplication Ab defined by

Ab =


A1,1b1 + A1,2b2 + · · ·+ A1,nbn
A2,1b1 + A2,2b2 + · · ·+ A2,nbn

...

Am,1b1 + Am,2b2 + · · ·+ Am,nbn

 ∈ Rm

in other words

(Ab)i =

n∑
j=1

Ai,jbj for 1 ≤ i ≤ m

– resulting quantity is vector of length m

– number of columns of A must equal to length of b

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Linear Algebra Basics 9

Sunghee Yun Oct 06, 2025

Matrix-matrix multiplication

• for matrices A ∈ Rm×n & B ∈ Rn×p

– matrix-matrix multiplication AB ∈ Rm×p defined by

(AB)i,j =

n∑
k=1

Ai,kBk,j for 1 ≤ i ≤ m

– resulting quantity is m-by-p matrix

– order matters and number of columns of A must equal to number of rows of B

• note matrix-vector multiplication is special case of matrix-matrix multiplication

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Linear Algebra Basics 10

Calculus Basics

Sunghee Yun Oct 06, 2025

Functions

• f : X → Y

– X = dom f - domain of f

– Y - codomain of f

– R(f) = {f(x) ∈ Y |x ∈ X} - range of f

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Calculus Basics 12

Sunghee Yun Oct 06, 2025

Differentiation & derivatives

• for real-valued function f : R→ R

– derivative of f at x ∈ R

f
′
(x) =

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

∈ R

- derivative exists if and only if limit exists

– second derivative of f at x ∈ R

f
′′
(x) =

d2

dx2
f(x) = lim

h→0

f ′(x+ h)− f ′(x)
h

∈ R

- second derivative exists if and only if limit exists

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Calculus Basics 13

Sunghee Yun Oct 06, 2025

Multivariate functions

• f : Rn → R - real-valued multivariate function

f(x) = f



x1

x2
...

xn


 = f(x1, x2, . . . , xn) ∈ R

• examples

– f : R3 → R - linear function

f(x) = x1 + 3x2 + 2x3

– f : R3 → R - convex quadratic function

f(x) = x
2
1 + x1x2 + 3x

2
2 + 5x

2
3

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Calculus Basics 14

Sunghee Yun Oct 06, 2025

Multivariate vector functions

• f : Rn → Rm - real-valued multivariate vector function

f(x) =


f1(x)

f2(x)
...

fm(x)

 ∈ Rm

where fj : R
n → R for 1 ≤ j ≤ m

• examples

– f : R3 → R2 - linear function

f(x) =

[
x1 + 3x2 + 2x3

−3x2 + x3

]
∈ R2

– f : R3 → R3 - componentwise function

f(x) =
[

exp(x1) exp(x2) exp(x3)
]T ∈ R3

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Calculus Basics 15

Sunghee Yun Oct 06, 2025

Partial derivative & gradient

for f : Rn → R

• ith partial derivative

∂

∂xi
f(x) =

f(x+ hei)− f(x)
h

=
f(. . . , xi−1, xi + h, xi+1, . . .)− f(x)

h

where ei ∈ Rn is ith unit vector

• gradient is vector of partial derivatives

∇f(x) =


∂f(x)/∂x1

∂f(x)/∂x2
...

∂f(x)/∂xn

 ∈ Rn

• we have

(∇f(x))i =
∂

∂xi
f(x) = e

T
i ∇f(x) ∈ R

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Calculus Basics 16

Sunghee Yun Oct 06, 2025

Jacobian

for f : Rn → Rm

• Jacobian matrix

Df(x) =


∂f1(x)

∂x1

∂f1(x)

∂x2
· · · ∂f1(x)

∂xn
∂f2(x)

∂x1

∂f2(x)

∂x2
· · · ∂f2(x)

∂xn
...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn

 ∈ Rm×n

– equivalently

Df(x) =


∇f1(x)T

∇f2(x)T
...

∇fm(x)T

 ∈ Rm×n

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Calculus Basics 17

Sunghee Yun Oct 06, 2025

Chain rule

• for f : R → Rm, g : Rm → R & h = g ◦ f , i.e., h(x) = g(f1(x), . . . , fm(x)),

derivative of h at x ∈ R

h
′
(x) =

m∑
j=1

∂

∂yj
g(f(x))f

′
j(x) =

m∑
j=1

∇g(f(x))jf ′j(x) ∈ R

• for f : Rn → Rm, g : Rm → Rp & h = g ◦ f , Jacobian of h at x ∈ Rn

Dh(x) = Dg(f(x))Df(x) ∈ Rp×n

- note Dg(f(x)) ∈ Rp×m & Df(x) ∈ Rm×n

• first is special case of second

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Calculus Basics 18

Statistics Basics

Sunghee Yun Oct 06, 2025

Random experiments & probability law

• random experiment

– outcome varies in unpredictable fashion (even) when experiment is being repeated

under same conditions

– specified by stating experimental procedure and set of one or more measurements or

observations

• probability law

– rule assigning probabilities to events of experiment that belong to event class F

p : F → R+

• properties (or axioms)

– for event A ∈ F , p(A) called probability of A

– for event A,B ∈ F with A ∩ B = ∅

p(A ∪ B) = p(A) + p(B)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Statistics Basics 20

Sunghee Yun Oct 06, 2025

Conditional probability

• probability of event A given that event B has occurred, called conditional probability,

denoted by

p(A|B)

• formula

p(A|B) =
p(A ∩ B)

p(B)

– thus

p(A ∩ B) = p(A|B)p(B) = p(B|A)p(A)

• Bayes’ theorem

p(A|B) =
p(B|A)p(A)

p(B)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Statistics Basics 21

Sunghee Yun Oct 06, 2025

Independence

• for events A & B, when knowledge of occurrence of B does not alter probability of A

– A said to be independent of B

• following statements are equivalent

– A is independent of B

– B is independent of A

– p(A|B) = p(A)

– p(B|A) = p(B)

– p(A ∩ B) = p(A)p(B)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Statistics Basics 22

Sunghee Yun Oct 06, 2025

Random variables

• discrete random variable X assumes values from countable set {x1, x2, . . .}

• continuous random variable X assumes values from R

• random vector X assumes values from Rn

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Statistics Basics 23

Sunghee Yun Oct 06, 2025

PMF, PDF & CDF

• probability mass function (PMF) of discrete X ∈ R

pX(x) = p(X = x)

• probability density function (PDF) of continuous X ∈ R∫ b

a

pX(x) = p(a ≤ X ≤ b)

• cumulative distribution function (CDF) of (any) X ∈ R

FX(x) = p(X ≤ x)

– for discrete X - FX(x) =
∑

x′≤x pX(x
′)

– for continuous X - FX(x) =
∫ x
−∞ pX(x

′)dx′

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Statistics Basics 24

Sunghee Yun Oct 06, 2025

Joint PMF, PDF & CDF

• joint PMF of discrete X & Y

pX,Y (x, y) = p(X = x & Y = y)

• join PDF of continuous X & Y∫ d

c

∫ b

a

pX,Y (x, y)dxdy = p(a ≤ X ≤ b & c ≤ Y ≤ d)

• joint CDF of X & Y

FX,Y (x, y) = p(X ≤ x & Y ≤ y)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Statistics Basics 25

Sunghee Yun Oct 06, 2025

Joint PMF, PDF & CDF - random vector

• (joint) PMF of discrete X ∈ Rn

pX(x) = p(X1 = x1 & · · · & Xn = xn)

• (join) PDF of continuous X ∈ Rn∫ bn

an

· · ·
∫ b1

a1

pX(x)dx1 · · · dxn = p(a1 ≤ X1 ≤ b1 & · · · & an ≤ Xn ≤ bn)

• (joint) CDF of X ∈ Rn

FX(x) = p(X1 ≤ x1 & · · · & Xn ≤ xn)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Statistics Basics 26

Sunghee Yun Oct 06, 2025

Expected value, variance & covariance matrix

• expected value

– for discrete X

EX =
∑
x

xpX(x)

– for conditions X

EX =

∫ ∞

−∞
xpX(x)dx

• variance for scalar X ∈ R

Var(X) = E(X − EX)
2
= EX

2 − (EX)
2

• covariance matrix for vector X ∈ Rn

Var(X) = E(X − EX)(X − EX)
T
= EXX

T − (EX)(EX)
T

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Statistics Basics 27

Sunghee Yun Oct 06, 2025

Conditional expectation

for two random variables X & Y

• expected value of Y conditioned on X

E(Y |X = x) =

∫
yp(y|x)dy

where

p(y|x) =
pX,Y (x, y)

pX(x)

• note

E
X,Y

f(X,Y) = E
X
E
Y
(f(X,Y)|X)

because ∫ ∫
f(x, y)p(x, y)dxdy =

∫ (∫
f(x, y)p(y|x)dy

)
p(x)dx

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Statistics Basics 28

Discrete Random Variables

Sunghee Yun Oct 06, 2025

Bernoulli distribution

• model single binary trial with probability p of success (and, hence (1− p) of failure)

• PMF, mean, variance

p(k) = p
k
(1− p)1−k =

{
1− p if k = 0

p if k = 1

E(X) = p Var(X) = p(1− p)

• ML applications - (foundation for)

– logistic regression, binary classification, modeling click-through rates, A/B testing

outcomes

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Discrete Random Variables 30

Sunghee Yun Oct 06, 2025

Binomial distribution

• model number of successes in n independent Bernoulli trials with probability p

• PMF, mean, variance

p(k) =

(
n

k

)
p
k
(n− p)1−k for 1 ≤ k ≤ n

E(X) = np Var(X) = np(1− p)

• ML applications

– modeling conversion rates, quality control testing, ensemble voting methods, batch

processing success rates

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Discrete Random Variables 31

Sunghee Yun Oct 06, 2025

Multinomial distribution

• generalizes binomial distribution to multiple categories with probabilities p1, . . . , pk

• PMF, mean, variance

p(k) =
n!

x1! · · · · · xk!
p
x1
1 · · · p

xk
k

E(Xi) = npi Var(Xi) = npi(1− pi) Cov(Xi, Xj) = −npipj

• ML applications

– multi-class classification, topic modeling, document classification, NLP,

recommendation system

– market basket analysis, survey analysis, election pollings

– genetics, clinical trials, quality control

• widely used in Bayesian inference with Dirichlet priors

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Discrete Random Variables 32

Sunghee Yun Oct 06, 2025

Geometric distribution

• model number of trials needed to achieve first success in independent Bernoulli trials

• PMF, mean, variance

p(k) = p(1− p)k−1 E(X) = 1/p Var(X) = (1− p)/p2

• ML applications

– modeling time-to-conversion, failure analysis, reinforcement learning episode lengths,

web crawling stopping conditions

• memoryless property p(X > m+ n|X > m) = p(X > n)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Discrete Random Variables 33

Sunghee Yun Oct 06, 2025

Negative binomial distribution

• model number of trials needed to achieve r successes in independent Bernoulli trials

• PMF, mean, variance

p(k) =

(
k − 1

r − 1

)
p
r
(1− p)k−r E(X) = r/p Var(X) = r(1− p)/p2

• ML applications

– modeling overdispersed count data, customer acquisition costs, reliability engineering,

text analysis for word frequencies

• often used when Poisson assumptions are violated due to overdispersion

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Discrete Random Variables 34

Sunghee Yun Oct 06, 2025

Poisson distribution

• model number of events occurring in fixed interval of time or space

• PMF, mean, variance (λ > 0)

p(k) = e
−λ
λ
k
/k! E(X) = λ Var(X) = λ

• ML applications

– modeling web traffic, system failures

– word counts (in NLP), user interactions (in recommendation systems)

• approximates binomial when n is large & p is small with = np

• sum of independent Poisson variables is Poisson

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Discrete Random Variables 35

Sunghee Yun Oct 06, 2025

Hypergeometric distribution

• model number of successes in n draws without replacement from finite population of

size N containing K successes

• PMF, mean, variance (N,K ∈ N with N > K)

p(k) =

(K
k

)(N−K
n−k

)(N
n

) E(X) =
nK

N
Var(X) =

nK

N
·
N −K
N

·
N − n
N − 1

• ML applications

– sampling without replacement, quality control testing

– feature selection validation, A/B testing with finite populations

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Discrete Random Variables 36

Continuous Random Variables

Sunghee Yun Oct 06, 2025

Uniform distribution

• model equally likely outcomes over continuous interval [a, b] representing complete

uncertainty within bounded range

• PDF, mean, variance (a, b ∈ R with b > a)

p(x) = 1/(b− a)I[a,b](x) E(X) = (a+ b)/2 Var(X) = (b− a)2/12

• ML applications

– Monte Carlo sampling, generating baseline distributions for hypothesis testing

• maximum entropy distribution for bounded continuous support

• foundation for pseudo-random number generation and inverse transform sampling

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 38

Sunghee Yun Oct 06, 2025

Gaussian distribution

• most important continuous distribution

• model symmetric bell-shaped data arising from many natural processes

• PDF, mean, variance (µ ∈ R, σ > 0)

p(x) =
1

√
2πσ

e
−(x−µ)2/2σ2

E(X) = µ Var(X) = σ
2

• ML applications

– linear regression error terms, NN weight initialization, PCA, noise modeling

• invariant under linear transformations, maximum entropy for given mean and variance

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 39

Sunghee Yun Oct 06, 2025

Multivaraite Gaussian distribution

• generalize scalar Gaussian to random vector

• PDF, mean, variance (µ ∈ Rn, Σ ∈ Sn++)

p(x) =
1

(2π)n/2 det(Σ)1/2
e
−1
2(x−µ)

TΣ−1(x−µ)
E(X) = µ Cov(X) = Σ

• ML applications

– Gaussian mixture, PCA, Kalman filtering, Gaussian processes, latent variable models

• maximum likelihood estimation having closed-form solution, foundation for many

Bayesian models

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 40

Sunghee Yun Oct 06, 2025

Exponential distribution

• model time between events in Poisson process, representing memoryless waiting times

or lifetimes

• PDF, mean, variance (λ > 0)

p(x) = λe
−λx

I[0,∞)(x) E(X) = 1/λ Var(X) = 1/λ
2

• ML applications

– system failure times, web session durations, survival analysis

• memoryless property p(X > s+t|X > s) = p(X > t) - only continuous distribution

with this property, minimum of exponentials is exponential

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 41

Sunghee Yun Oct 06, 2025

Gamma distribution

• model positive continuous values - generalizing exponential distribution to allow for more

flexible shapes, e.g., for waiting times for multiple events

• PDF, mean, variance (α, β > 0)

p(x) =
βα

Γ(α)
x
α−1

e
−βx

I[0,∞)(x) E(X) = α/β Var(X) = α/β
2

• ML applications

– survival analysis, queuing theory

• exponential is special case when α = 1, sum of independent exponentials is gamma,

conjugate prior for Poisson and exponential distributions

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 42

Sunghee Yun Oct 06, 2025

Beta distribution

• model probabilities and proportions, defined on [0, 1] with flexible shapes from uniform

to highly skewed

• PDF, mean, variance (α, β > 0)

p(x) =
Γ(α, β)

Γ(α)Γ(β)
x
α−1

(1−x)β−1 E(X) =
α

α+ β
Var(X) =

αβ

(α+ β)2(α+ β + 1)

• ML applications

– modeling success rates, A/B testing, probability calibration

• uniform is special case when α = β = 1, conjugate prior for Bernoulli & binomial

related to Dirichlet distribution

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 43

Sunghee Yun Oct 06, 2025

Log-normal distribution

• model positive values where logarithm follows normal distribution, representing

multiplicative processes and heavy-tailed phenomena

• PDF, mean, variance (µ ∈ R, σ > 0)

p(x) = e
−(log x−µ)2/2σ2

/xσ
√
2π E(X) = e

µ+σ2/2
Var(X) = (e

σ2−1)e2µ+σ
2

• ML applications

– modeling income distributions, stock prices, file sizes, network traffic, biological

measurements, computational complexity

• heavy right tail, multiplicative central limit theorem

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 44

Sunghee Yun Oct 06, 2025

Chi-square distribution

• model sum of squares of independent standard normal random variables, fundamental

in statistical testing and confidence intervals

• PDF, mean, variance (ν ∈ N - degree of freedom)

p(x) =
1

2ν/2Γ(ν/2)
x
ν/2−1

e
−x/2

I[0,∞)(x) E(X) = ν Var(X) = 2ν

• ML applications

– goodness-of-fit testing, feature selection, confidence intervals for variance,

regularization in NN

• special case of gamma distribution, sum of independent chi-squares is chi-square

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 45

Sunghee Yun Oct 06, 2025

Student’s t-distribution

• model sum of squares of independent standard normal random variables, fundamental

in statistical testing and confidence intervals

• PDF, mean, variance (ν > 0 degrees of freedom - almost always positive integer)

p(x) =
Γ((ν + 1)/2)
√
πνΓ(ν/2)

(1 + x
2
/ν)

−(ν+1)/2

E(X) =

{
0 if ν > 1

undefined otherwise

Var(X) =


ν/(ν − 2) if ν > 2

∞ if 1 < ν ≤ 2

undefined otherwise

• ML applications

– Bayesian inference, robust regression, confidence intervals with small samples,

uncertainty quantification in DL

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 46

Sunghee Yun Oct 06, 2025

• heavier tails than normal, approaches standard normal as ν approaches ∞, symmetric

around zero, undefined moments for small ν

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 47

Sunghee Yun Oct 06, 2025

Weibull distribution

• model survival times & failure rates with flexible hazard functions, generalizing

exponential distribution for reliability analysis

• PDF, mean, variance (λ, k > 0)

p(x) = (k/λ)(x/λ)
k−1
e
−(x/λ)k

I[0,∞)(x) E(X) = λΓ(1 + 1/k)

• ML applications

– survival analysis, reliability engineering, wind speed modeling, NN activation functions,

extreme value theory

• flexible hazard function, minimum of Weibull variables is Weibull

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 48

Sunghee Yun Oct 06, 2025

Cauchy distribution

• model heavy-tailed symmetric data with undefined mean and variance, arising in physics

and robust statistics

• PDF, mean, variance (x0 ∈ R, γ > 0)

p(x) =
1

πγ(1 + ((x− x0)/γ)2)
E(X) = undefined Var(X) = undefined

• ML applications

– robust statistics, modeling outliers, Bayesian inference with heavy-tailed priors, physics

simulations, anomaly detection

• no defined moments, stable distribution, ratio of two independent normals is Cauchy

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 49

Sunghee Yun Oct 06, 2025

Laplace distribution

• model symmetric data with heavier tails than normal, representing difference between

two independent exponential variables

• PDF, mean, variance (µ ∈ R, b > 0)

p(x) =
1

2b
exp(−|x− µ|/b) E(X) = µ Var(X) = 2b

2

• ML applications

– lasso, robust regression, sparse coding, image processing, privacy-preserving ML

• maximum entropy for given mean absolute deviation, related to L1 penalty, robust to

outliers (fundamentally more than normal distribution)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 50

Sunghee Yun Oct 06, 2025

Pareto distribution

• model heavy-tailed phenomena following power-law distributions, representing “80-20

rule” and scale-free networks

• PDF, mean, variance (xm, α > 0)

p(x) = αx
α
m/x

α+1

E(X) =

{
∞ if α ≤ 1

αxm/(α− 1) if α > 1

Var(X) =

{
∞ if α ≤ 2

αx2
m/(α− 1)2(α− 2) if α > 2

• ML applications

– model wealth distributions, network degree distributions, web page rankings, file sizes,

NLP

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 51

Sunghee Yun Oct 06, 2025

• heavy right tail, scale-free property, finite moments only for sufficiently large α, basis

for power-law distributions

PDF CDF

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Prerequisites - Continuous Random Variables 52

ML Basics

Estimation, Regression, and Inference

Sunghee Yun Oct 06, 2025

The optimal estimator

• estimation problem

– for two random variables X ∈ Rn & Y ∈ Rm

– design estimator or predictor g : Rn → Rm to make g(X) as close as possible to Y

• when closeness measured by mean-square-error (MSE), the optimal solution exists

g
∗
(x) = E(Y |X = x)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 55

Sunghee Yun Oct 06, 2025

Proof of optimality

E
X,Y

(g(X)− g∗(X))
T
(g
∗
(X)− Y) = E

X
E
Y
((g(X)− g∗(X))

T
(g
∗
(X)− Y)|X)

= E
X
((g(X)− g∗(X))

T
E
Y
(g
∗
(X)− Y)|X)

= 0

hence

E ∥g(X)− Y ∥22 = E ∥g(X)− g∗(X) + g
∗
(X)− Y ∥22

= E ∥g(X)− g∗(X)∥22 + E ∥g∗(X)− Y ∥22 + 2E(g(X)− g∗(X))
T
(g
∗
(X)− Y)

= E ∥g(X)− g∗(X)∥22 + E ∥g∗(X)− Y ∥22
≥ E ∥g∗(X)− Y ∥22

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 56

Sunghee Yun Oct 06, 2025

Regression

• in most cases, not possible to obtain g∗ (unless, e.g., full knowledge of join PDF)

• regression problem

– given data set D = {(x1, y1), . . . , (xN , yN)} ⊂ Rn × Rm

– find g : Rn → Rm to make g(X) as close as possible to Y

• given certain regression method, regressor depends on dataset D

g(·;D)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 57

Sunghee Yun Oct 06, 2025

Bias & variance

assuming D is random variable for dataset D

• estimation MSE is

E
X,Y,D

∥g(X;D)− Y ∥22

= E
X,D
∥g(X;D)− E

D
g(X;D)∥22︸ ︷︷ ︸

variance

+E
X
∥E
D
g(X;D)− g∗(X)∥22︸ ︷︷ ︸

bias

+ E
X,Y
∥g∗(X)− Y ∥22︸ ︷︷ ︸

noise

= E
X,D
∥g(X;D)− E

D
g(X;D)∥22︸ ︷︷ ︸

variance

+ E
X,Y
∥E
D
g(X;D)− Y ∥22︸ ︷︷ ︸

bias + noise

• bias & variance

– bias measures how good model is in average

– variance measures how much model varies depending on dataset it is trained on

• noise cannot be reduced even with the optimal predictor

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 58

Sunghee Yun Oct 06, 2025

Model choice & hyperparameter optimization

• want to choose model or modeling method to make both bias & variance low

– (too) complex models have low bias, but high variance

– (too) simple models have low variance, but high bias

• usually solved by hyperparameter optimization

– sometimes called hyperparameter tuning

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 59

Sunghee Yun Oct 06, 2025

MLE

• maximum likelihood estimation (MLE)

– assume parameterized distribution of X ∈ Rn by θ ∈ Θ - p(x; θ)

– find θ maximizing likelihood function

p(x1, . . . , xN ; θ) =

N∏
i=1

p(xi; θ)

• MLE solution

θ̂MLE = argmax
θ∈Θ

N∏
i=1

p(xi; θ)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 60

Sunghee Yun Oct 06, 2025

MAP estimation

• maximum a posteriori (MAP) estimation

– assume prior knowledge of θ - p(θ)

– assume parameterized distribution of X ∈ Rn by θ - p(x|θ)
– find θ maximizing posteriori probability

p(θ|x1, . . . , xN)

– Bayes’ theorem implies p(θ|x1, . . . , xN) ∝ p(θ)
∏N

i=1 p(xi|θ)
• MAP solution

θ̂MAP = argmax
θ∈Θ

p(θ)

N∏
i=1

p(xi|θ)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 61

Sunghee Yun Oct 06, 2025

Bayesian inference

• both MLE & MAP estimation are point estimations

• Bayesian inference

– updates prior distribution by replacing it with posterior distribution

• conjugate prior

– if prior can be further parameterized by hyperparameter α and posterior is in same

probability distribution family, both prior and posterior called conjugate distributions,

prior called conjugate prior

p(θ;α)

– in this case, can update hyperparameter α, i.e., find α+ such that

p(θ;α
+
) = p(θ|x1, . . . , xN ;α) =

p(θ;α)
∏N

i=1 p(xi|θ;α)
p(x1, . . . , xN ;α)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 62

Sunghee Yun Oct 06, 2025

Bayesian algorithms & methods

• exact inference methods

– conjugate priors - e.g., Beta-Binomial, Normal-Normal, etc.

• Markov Chain Monte Carlo (MCMC)

– Metropolis-Hastings algorithm, Gibbs sampling, Hamiltonian Monte Carlo (HMC)

• variational inference (VI)

– mean field variational Bayes - assuming parameter independence for tractability

– structured variational inference - maintaining dependencies & inference tractability

– variational autoencoder (VAE) - NN-based VI for complex distributions

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 63

Sunghee Yun Oct 06, 2025

Pros & cons of Bayesian inference

• pros

– principled uncertainty quantification - providing complete probability distributions

– incorporates prior knowledge - allowing to formally include domain expertise, etc.

– coherent framework - providing mathematically consistent approach

– natural sequential learning - easily handles streaming data or online learning scenarios

– interpretable results - outputs directly interpretable as probabilities

• cons

– computational complexity - often requiring sophisticated sampling methods

– prior sensitivity, scalability issues, implementation difficulty, slower inference, model

selection challenges

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Estimation, Regression, and Inference 64

Machine Learning

Sunghee Yun Oct 06, 2025

Machine learning

• ML

– subfield of computer science that

“gives computers the ability to learn without being explicitly programmed.”

- Arthur Samuel (1959)

– not magic, still less intelligent than humans for many cases

– numerically minimizes certain (mathematical) loss function to (indirectly) solve some

statistically meaningful problems

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Machine Learning 66

Sunghee Yun Oct 06, 2025

Two famous quotes and one non-famous quote

• Albert Einstein

The grand aim of all science is to cover the greatest number of empirical facts by

logical deduction from the smallest possible number of hypotheses or axioms.

• Alfred North Whitehead

Civilization advances by extending the number of important operations which we

can perform without thinking about them. - Operations of thought are like cavalry

charges in a battle – they are strictly limited in number, they require fresh horses,

and must only be made at decisive moments.

• Demis Hassabis

. . . biology can be thought of as information processing system, albeit

extraordinarily complex and dynamic one . . . just as mathematics turned out

to be the right description language for physics, biology may turn out to be the

perfect type of regime for the application of AI!

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Machine Learning 67

Sunghee Yun Oct 06, 2025

Supervised learning

• most basic and widely used type of ML

• model is trained on dataset where correct output or “label” is provided for each input

• use cases

– image classification, object detection, semantic segmentation

– natural language processing (NLP) - text classification, sentiment analysis

– predictive modeling, medical diagnosis

• algorithms

– linear regression, logistic regression, decision trees, random forest

– support vector machine (SVM), k-nearest neighbors (kNN)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Machine Learning 68

Sunghee Yun Oct 06, 2025

Unsupervised learning

• model is given dataset without any labels or output

• model finds patterns & structure within data on its own

• use cases

– clustering, dimensionality reduction

– anomaly detection, generative models

• algorithms

– k-means clutering, hierarchical clustering, principal component analysis (PCA)

– t-distributed stochastic neighbor embedding (t-SNE)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Machine Learning 69

Sunghee Yun Oct 06, 2025

Reinforcement learning

• (quite different from supervised & unsupervised learnings)

• model learns from consequences of its actions

– model receives feedback on its performance; feedback called reward

– uses that information to adjust its actions and improve its performance over time

• use cases

– robotics, game playing, autonomous vehicles, industrial control

– healthcare, finance

• algorithms

– Q-learning, SARSA, DQN, A3C, policy gradient

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Machine Learning 70

ML Formulations

Sunghee Yun Oct 06, 2025

Loss minimization

• assume data set {(x(1), y(1)), . . . , (x(m), y(m))} with x(i) ∈ Rn, y(i) ∈ Rq

• loss minimization is to solve

minimize 1
m

∑m
i=1 l(y

(i), f(x(i); θ))

where optimization variable is θ ∈ Rp, f : Rn × Rp → Rq is model function &

l : Rq × Rq → R+ is loss function

– find model with smallest modeling error

• loss function examples

– Eucleadina norm (2-norm) - ∥y − ŷ∥22
– 1-norm - ∥y − ŷ∥1
– soft-max - yT exp(ŷ)/1T exp(ŷ)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - ML Formulations 72

Sunghee Yun Oct 06, 2025

Statistical problem formulation

• assume data set Xm = {x(1), . . . , x(m)}

– drawn independently from (true, but unknown) data generating distribution pdata(x)

• maximum likelihood estimation (MLE) is to solve

maximize pmodel(X; θ) =
∏m

i=1 pmodel(x
(i); θ)

where optimization variable is θ

– find most plausible or likely model that fits data

• equivalent (but more numerically tractable) formulation

maximize log pmodel(X; θ) =
∑m

i=1 log pmodel(x
(i); θ)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - ML Formulations 73

Sunghee Yun Oct 06, 2025

MLE & KL divergence

• in information theory, Kullback-Leibler (KL) divergence defines distance between two

probability distributions p & q

DKL(p∥q) = E
X∼p

log p(X)/q(X) =

∫
x∈Ω

p(x) log
p(x)

q(x)
dx

• KL divergence between data distribution pdata & model distribution pmodel can be

approximated by Monte Carlo method as

DKL(pdata∥pmodel(θ)) ≃
1

m

m∑
i=1

(log pdata(x
(i)
)− log pmodel(x

(i)
; θ))

where x(i) are drawn (of course) according to pdata

• hence minimizing KL divergence is equivalent to solving MLE problem!

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - ML Formulations 74

Sunghee Yun Oct 06, 2025

Equivalence of MLE to MSE

• assume model is Gaussian, i.e., y ∼ N (gθ(x),Σ) (gθ(x) ∈ Rp, Σ ∈ Sp++)

p(y|x; θ) =
1

√
2π

p|Σ|1/2
exp

(
−
1

2
(y − gθ(x))T Σ

−1
(y − gθ(x))

)

• assuming that Σ = αIp, log-likelihood becomes

m∑
i=1

log p(x
(i)
, y

(i)
; θ) =

m∑
i=1

log p(y
(i)|x(i)

; θ)p(x
(i)
)

= −
m∑
i=1

∥y(i) − gθ(x(i)
)∥22/2α−

pm

2
log(2πα) +

m∑
i=1

log p(x
(i)
)

• hence minimizing mean-square-error (MSE) is equivalent to solving MLE problem!

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - ML Formulations 75

Sunghee Yun Oct 06, 2025

Numerical optimization problem formulation

• (true) problem to solve

minimize E l(gθ(X), Y)

– impossible to solve

• loss minimize formulation - surrogate problem to solve

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i))

• formulation with regularization

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i)) + γr(θ)

• stochastic gradient descent (SGD)

θ
k+1

= θ
k − αk∇f(θk)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - ML Formulations 76

Deep Learning

Sunghee Yun Oct 06, 2025

Deep learning (DL)

• machine learning using artificial neural networks with multiple layers for

– automatically learning hierarchical representations of data

• key components

– deep neural networks, hidden layers, backpropagation, activation functions

– hierarchical feature learning, representation learning, end-to-end learning

• key breakthroughs enabling DL

– massively available data, GPU computing, algorithmic advances

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Deep Learning 78

Sunghee Yun Oct 06, 2025

Convolutional neural network (CNN)

• specialized DL learning architecture designed for

– processing grid-like data such as images

– where spatial relationships between pixels matter

• key components

– convolutional layers, pooling layers, activation functions, fully connected layers

• how it works

– feature extraction, translation invariance, parameter sharing

• why it excels

– local connectivity, hierarchical learning

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Deep Learning 79

Sunghee Yun Oct 06, 2025

Recurrent neural network (RNN)

• neural network designed for

– processing sequential data by maintaining memory of previous inputs

• key components

– hidden states, recurrent connections, input/output layers, weight sharing

• how it works

– sequential processing, memory mechanism, temporal dependencies

• why it excels

– variable length input, context awareness, flexible architecture

• variants - long short-term memory (LSTM), gated recurrent unit (GRU)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Deep Learning 80

Training DNN using SGD

Sunghee Yun Oct 06, 2025

Notations

• p / q - dimension of input / output spaces

• l : Rq × Rq → R+ - loss function

• d - depth of neural network

• ni (1 ≤ i ≤ d) - number of perceptrons in ith layer

• z[i] ∈ Rni - input to ith layer

• o[i] ∈ Rni - output of ith layer

• W [i] ∈ Rni×ni−1 - weights of connections between (i− 1)th and ith layer

• w[i] ∈ Rni×ni−1 - bias weights of ith layer

• ϕ[i] : Rni → Rni - activation functions of ith layer

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 82

Sunghee Yun Oct 06, 2025

Basic unit & activation function

• basic unit

• activation function

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 83

Sunghee Yun Oct 06, 2025

Neural net equations

• modeling function for the (deep) neural network gθ : R
p → Rq

gθ = ϕ
[d]
θ ◦ ψ

[d]
θ ◦ · · · ◦ ϕ

[1]
θ ◦ ψ

[1]
θ

or equivalently

gθ(x) = ϕ
[d]
θ (ψ

[d]
θ (· · · (ϕ[1]

θ (ψ
[1]
θ (x)))))

• for ith layer

– output via (componentwise) activation function

o
[i]

= ϕ
[i]
(z

[i]
)⇔ o

[i]
j = ϕ

[i]
j (z

[i]
j) (1 ≤ j ≤ ni)

– input via affine transformation ψ[i] : Rni−1 → Rni

z
[i]

= ψ
[i]
(o

[i−1]
) = W

[i]
o
[i−1]

+ w
[i]

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 84

Sunghee Yun Oct 06, 2025

Stochastic gradient descent

• ML training tries to minimize some loss function - f(θ) depends on (not only θ, but

also) batch of data (x(1), y(1)), . . . (x(m), y(m))

minimize f(θ)

• while exist hundreds of optimization methods solving this problem

– the only method used widely is stochastic gradient descent!

• (stochastic) gradient descent

θ
k+1

= θ
k − αk∇f(θk)

• backpropagation is used to evaluate this (stochastic) gradient using chain rule

batch stochastic mini-batch

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 85

Sunghee Yun Oct 06, 2025

Chain rule

• suppose

– two functions f : Rn → Rm & g : Rm → R

– Jacobian of f - Df : Rn → Rm×n

– gradient of g - ∇g : Rm → Rm

• gradient of composite function h = g ◦ f

∇h(θ) = Df(θ)
T∇g(f(θ)) ∈ Rn (using matrix-vector multiplication)

in other words

∂

∂θi
h(θ) =

m∑
j=1

∂

∂θi
fj(θ)∇jg(f(θ)) (scalar version)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 86

Sunghee Yun Oct 06, 2025

Loss function & its gradient

• assume cost function of deep neural network is

f(θ) =
1

m

m∑
k=1

l(gθ(x
(k)

), y
(k)

) =
1

m

m∑
k=1

fk(θ)

where

fk(θ) = l(gθ(x
(k)

), y
(k)

)

• gradient is

m∇θf(θ) =
m∑
k=1

∇θl(gθ(x
(k)

), y
(k)

) =
m∑
k=1

∇θfk(θ)

– i.e., evaluate gradient ∇θfk(θ) for each data point (x(k), y(k))

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 87

Sunghee Yun Oct 06, 2025

Hidden layers

ϕ
[i−1]
1z

[i−1]
1 o

[i−1]
1

ϕ
[i−1]
2z

[i−1]
2 o

[i−1]
2

ϕ
[i−1]
3z

[i−1]
3 o

[i−1]
3

ϕ
[i−1]
4z

[i−1]
4 o

[i−1]
4

(i− 1)th hidden layer

ϕ
[i]
1z

[i]
1 o

[i]
1

ϕ
[i]
2z

[i]
2 o

[i]
2

ϕ
[i]
3z

[i]
3 o

[i]
3

ith hidden layer

W
[i]
1,1

W
[i]
2,1

W
[i]
3,1 W

[i]
1,2

W
[i]
2,2

W
[i]
3,2

W
[i]
1,3

W
[i]
2,3

W
[i]
3,3

W
[i]
1,4

W
[i]
2,4

W
[i]
3,4

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 88

Sunghee Yun Oct 06, 2025

Backpropagation formula using chain rule

• for each data (x(k), y(k))

– via activation function

∂

∂z
[i]
j

fk(θ) =
∂

∂o
[i]
j

fk(θ)ϕ
[i]
j

′
(o

[i]
j) for 1 ≤ j ≤ ni (1)

where ϕ
[i]
j

′
(o

[i]
j) is derivative of activation function ϕ

[i]
j evaluated at o

[i]
j

– via affine transformation

∂

W
[i]
j,l

fk(θ) = o
[i−1]
l

∂

∂z
[i]
j

fk(θ) for 1 ≤ j ≤ ni & 1 ≤ l ≤ ni−1 (2)

∂

∂w
[i]
j

fk(θ) =
∂

∂z
[i]
j

fk(θ) for 1 ≤ j ≤ ni (3)

∂

∂o
[i−1]
l

fk(θ) =

ni∑
j=1

W
[i]
j,l

∂

∂z
[i]
j

fk(θ) for 1 ≤ l ≤ ni−1 (4)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 89

Sunghee Yun Oct 06, 2025

Backpropagation formula using matrix-vector multiplication

• for each data (x(k), y(k))

– via activation function

∇
z[i]
fk(θ) = Dϕ

[i]∇
o[i]
fk(θ) (5)

where Dϕ[i] = diag(ϕ
[i]
1

′
(o

[i]
1), . . . , ϕ[i]

ni

′
(o[i]ni

)) is Jacobian of ϕ[i] evaluated at o[i]

– via affine transformation

∇
W [i]fk(θ) = ∇

z[i]
fk(θ)o

[i−1]T ∈ Rni×ni−1 (6)

∇
w[i]fk(θ) = ∇

z[i]
fk(θ) ∈ Rni (7)

∇
o[i−1]fk(θ) = W

[i]T∇
z[i]
fk(θ) ∈ Rni−1 (8)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 90

Sunghee Yun Oct 06, 2025

Backpropagation formula using Python numpy package

• for each data (x(k), y(k))

– via activation function

grad z = phi dir * grad o (9)

where grad z, phi dir, grad o are 1d numpy.ndarray of size ni

– via affine transformation

grad W = numpy.dot(grad z, val o.T) (10)

grad w = grad z.copy() (11)

grad o prev = numpy.dot(grad z, W) (12)

where val o, grad w are 1d numpy.ndarray of size ni, grad o prev is 1d

numpy.ndarray of size ni−1, grad W is 2d numpy.ndarray of shape (ni, ni−1)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 91

Sunghee Yun Oct 06, 2025

Gradient evaluation using backpropagation

• forward propagation - evaluate for each (x(k), y(k))

gθ(x
(k)

) = ϕ
[d]
θ (ψ

[d]
θ (· · · (ϕ[1]

θ (ψ
[1]
θ (x

(k)
)))))

• backpropagation - evaluate partial derivatives backward

– evaluate gradient with respect to output of output layer o[d] = gθ(x
(k))

∇
o[d]
fk(θ) = ∇y1

l(gθ(x
(k)

), y
(k)

)

– evaluate gradient with respect to input from that with respect to output using (1),

or equivalently, using (5) i.e., evaluate ∇
z[i]
fk(θ) from ∇

o[i]
fk(θ)

– evaluate gradient with respect to weights, bias, and intput of previous layer using

(3), (4), & (2) or equivalently, using (7), (8), & (6) i.e., evaluate ∇
W [i]fk(θ),

∇
w[i]fk(θ) & ∇

o[i−1]fk(θ) from ∇
z[i]
fk(θ)

– repeat back to input layer to evaluate all

∇
W [1]fk(θ),∇w[1]fk(θ), . . . ,∇W [d]fk(θ),∇w[d]fk(θ)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - Training DNN using SGD 92

ML in Action

Sunghee Yun Oct 06, 2025

ML in practice

• define business problem - business objective, success metrics, establish baselines (early)

• data collection - data cleaning, validation & exploratory data analysis (EDA)

• feature engineering - based on domain expertise

• train/validation/test split - stratified sampling, chronological splits for time-series

• model selection or/and hyperparameter optimization

• monitoring, retraining & notification

• start simple, iterative fast (fail fast!), validate business impact - e.g., A/B test

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - ML Basics - ML in Action 94

Studying AI

Sunghee Yun Oct 06, 2025

Best ways to learn AI & ML

• first, learn basics - college classes, online courses, (easy) books

– no need to understand every mathematical details, but should know rough ideas!

• hands-on is MUST!

– learn and practice coding - Python is MUST; do not do (only) R

– learn git - know how to develop efficiently, plus import others’ work

• I think online cources are blessing to mankind!

– can’t say “you can’t do it because I don’t have access to good resource or you don’t

go to good schools” because . . . they are available!

– getting (expensive) certificates is good idea because . . . otherwise you wouldn’t

complete it! :) - and can post it on your LinkedIn!

• would be best if your task at work is related to ML

– however, even if that’s not the case or can’t be the case, can always do your own

personal projects – or contribute to public projects (on github)!

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Studying AI 96

Sunghee Yun Oct 06, 2025

Books

• The Elements of Statistical Learning - Hastie, Tibshirani & Friedman [HTF01]

• Pattern Recognition and Machine Learning - Christopher M. Bishop [Bis06]

• Deep Learning - Ian Goodfellow, Yoshua Bengio & Aaron Courville [GBC16]

• Reinforcement Learning: An Introduction - Richard S. Sutton & Andrew G. Barto [SB18]

• Machine Learning: A Probabilistic Perspective - Kevin P. Murphy [Mur12]

• Probabilistic Graphical Models - Daphne Koller & Nir Friedman [KF09]

• Convex Optimization - Stephen Boyd & Lieven Vandenberghe [BV04]

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Studying AI 97

Sunghee Yun Oct 06, 2025

Andrew Ng!

• Andrew Ng

– (co-)founder of “Deep Learning.AI” and “Coursera”, prominent figure in ML & AI

– his courses highly regarded because well-structured and provide insights

• latest Andrew Ng courses

– AI Agents in LangGraph

– AI Agentic Design Patterns with AutoGen

– Introduction to On-device AI

– Multi AI Agent Systems with Crew AI

– Building Multimodal Search and RAG - contrastive learning, multimodality to RAG

– Building Agentic RAG with LlamaIndex

– Quantisation In Depth

– In Prompt Engineering for Vision Models

– Getting Started with Mistral - open-source models (Mistral 7B, Mixtral 8x7B)

– Preprocessing Unstructured Data for LLM

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Studying AI 98

https://analyticsindiamag.com/10-ai-courses-from-andrew-ng-you-must-take/

Appendices

Reinforcement Learning

Sunghee Yun Oct 06, 2025

Reinforcement learning (RL)

• machine learning where agent learns how to take actions to achieve goal

– by maximizing cumulative reward

– while interacting with environment

• learning from interaction - foundational idea underlying all learning & intelligence

• differs from supervised learning

– labeled input and output pairs not presented

– sub-optimal actions need not be explicitly corrected

• focus is finding balance between exploration & exploitation

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning 101

Sunghee Yun Oct 06, 2025

Why Deep RL?

• Koray Kavukcuoglu (director of research at Deepmind) says

If one of the goals we work for here is AI, then it is at the core of that. RL

is a very general framework for learning sequential decision making tasks. And

DL, on the other hand, is (of course) the best set of algorithms we have to

learn representations. And combinations of these two different models is the best

answer so far we have in terms of learning very good state representations of very

challenging tasks that are not just for solving toy domains but actually to solve

challenging real world problems.

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning 102

MDP

Sunghee Yun Oct 06, 2025

Markov decision process (MDP)

• classical formulation of sequential decision making

– actions influence not just immediate rewards, but also subsequent states, hence,

involving delayed reward

– need to trade-off immediate and delayed reward

• elements - states, actions, reward, and return

• agent interacts with environment

– agent makes decision as to which action to take with knowledge of state it’s in

– action changes (state of) environment

– agent receives reward

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 104

Sunghee Yun Oct 06, 2025

MDP & Markov property

• agent in state St takes action At at t

– receives reward Rt+1 (from environment)

– environment transitions to state St+1

• sequence of random variables - S0, A0, R1, S1, A1, R2, S2, A2, R3, S3, A3, . . .

• Markov property - St+1, Rt+1|St, At, Rt, St−1, At−1, Rt−1, . . . = St+1, Rt+1|St, At

– formally expressed (using PDF)

p (St+1, Rt+1|St, At, Rt, St−1, At−1, Rt−1, . . .) = p (St+1, Rt+1|St, At)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 105

Sunghee Yun Oct 06, 2025

Policy & return

• policy - conditional probability of At given St

π(A|S) = p(At|St),

• return (at t) - Gt =
∑∞

k=0 γ
kRt+k = Rt+1 + γRt+2 + γ2Rt+3 + · · ·

• γ ∈ [0, 1] - discount factor

– if γ = 0, myopic

– if γ = 1, truly far-sighted

– if γ ∈ (0, 1), considers near-future rewards more importantly than those in far future

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 106

Sunghee Yun Oct 06, 2025

State value function & action value function

• state value function (sometimes referred to simply as value function)

vπ(s) = E
π,p
{Gt|St = s} = E

π,p

{ ∞∑
k=0

γ
k
Rt+k

∣∣∣∣∣St = s

}

– function of state - expected return agent will get from s when following π

• action value function (sometimes referred to simply as action function)

qπ(s, a) = E
π,p
{Gt|St = s, At = a} = E

π,p

{ ∞∑
k=0

γ
k
Rt+k

∣∣∣∣∣St = s, At = a

}

– function of state & action - expected return agent will get from s when agent takes a

• (most) RL algorithms (try to) maximize either of these functions - not maximizing

immediate reward, but long-term return

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 107

Sunghee Yun Oct 06, 2025

Bellman

• Richard E. Bellman

– introduced dynamic programming (DP) in 1953

– proposed Bellman equation as necessary condition for optimality associated with DP

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 108

https://en.wikipedia.org/wiki/Richard_E._Bellman

Sunghee Yun Oct 06, 2025

Bellman equations

• Bellman equation for state value function

vπ(s) =
∑
a

π(a|s)qπ(s, a) =
∑
a

π(a|s)
∑
s′,r

p(s
′
, r|s, a)

(
r + γvπ(s

′
)
)

(13)

• Bellman equation for action value function

qπ(s, a) =
∑
s′,r

p(s
′
, r|s, a)

(
r + γvπ(s

′
)
)

=
∑
s′,r

p(s
′
, r|s, a)

r + γ
∑
a′
π(a

′|s′)qπ(s′, a′)

 (14)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 109

Sunghee Yun Oct 06, 2025

Bellman equation derviation - state value function

• Markov property implies

– value functions only depend on current state & action taken

– function value closely related to function values of next states

• these facts cleverly used to derive Bellman equations

vπ(s) = E
π,p
{Gt|St = s}

= E
At|St=s

E
π,p
{Gt|St = s, At}

=
∑
a

p(At = a|St = s) E
π,p
{Gt|St = s, At = a}

=
∑
a

π(a|s) E
π,p
{Gt|St = s, At = a}

=
∑
a

π(a|s)qπ(s, a) (15)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 110

Sunghee Yun Oct 06, 2025

Bellman equation derviation - action value function

qπ(s, a) = E
π,p
{Gt|St = s, At = a}

= E
St+1,Rt+1|St=s,At=a

E
π,p
{Gt|St = s, At = a, St+1, Rt+1}

= E
St+1,Rt+1|St=s,At=a

E
π,p

{ ∞∑
k=0

γ
k
Rt+k+1

∣∣∣∣∣St = s, At = a, St+1, Rt+1

}

= E
St+1,Rt+1|St=s,At=a

E
π,p

{
Rt+1 + γ

∞∑
k=0

γ
k
Rt+k+2

∣∣∣∣∣St = s, At = a, St+1, Rt+1

}

=
∑
s′,r

pSt+1,Rt+1|St,At(s
′
, r|s, a)

E
π,p

{
Rt+1 + γGt+1|St = s, At = a, St+1 = s

′
, Rt+1 = r

}

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 111

Sunghee Yun Oct 06, 2025

=
∑
s′,r

pSt+1,Rt+1|St,At(s
′
, r|s, a)

(
r + γ E

π,p

{
Gt+1|St = s, At = a, St+1 = s

′
, Rt+1 = r

})
=

∑
s′,r

pSt+1,Rt+1|St,At(s
′
, r|s, a)

(
r + γ E

π,p

{
Gt+1|St+1 = s

′})

=
∑
s′,r

pSt+1,Rt+1|St,At(s
′
, r|s, a)

(
r + γvπ(s

′
)
)

(16)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 112

Sunghee Yun Oct 06, 2025

Optimal functions

• define optimal state-value function as that of optimal policy π∗

v∗(s) = vπ∗(s) = max
π∈Π

vπ(s) (17)

• (similarly) define optimal action-value function as that of π∗

q∗(s, a) = qπ∗(s, a) = max
π∈Π

qπ(s, a) (18)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 113

Sunghee Yun Oct 06, 2025

Bellman optimality equations

(17) & (18) with (15) & (16) imply

• Bellman optimality equation for state value function

v∗(s) = vπ∗(a) = max
a∈A

qπ∗(s, a) = max
a∈A

∑
s′,r

p(s
′
, r|s, a)

(
r + γvπ(s

′
)
)

(19)

• Bellman optimality equation for action value function

q∗(s, a) = qπ∗(s, a) =
∑
s′,r

p(s
′
, r|s, a)

(
r + γvπ∗(s

′
)
)

=
∑
s′,r

p(s
′
, r|s, a)

(
r + γmax

a′∈A
qπ∗(s

′
, a
′
)

)
(20)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - MDP 114

Dynamic Programming

Sunghee Yun Oct 06, 2025

Dynamic programming (DP)

• collection of algorithms to compute optimal policies given perfect model of environment

as MDP

• provide essential foundation for understanding of RL methods

• all RL algorithms can be viewed as attempts to achieve much the same effect as DP

– only with less computation and without assuming perfect model of environment

• key idea of RL in general

– use of value functions to organize and structure search for good policies

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Dynamic Programming 116

Sunghee Yun Oct 06, 2025

Policy evaluation (prediction)

• policy evaluation (in DP literature)

– compute state-value function vπ for arbitrary policy π

– also referred to as prediction problem

• existence and uniqueness of vπ guaranteed as long as either

– γ < 1

– eventual termination is guaranteed from all states under policy π

• policy evaluation algorithm uses fact that all state value functions satisfy Bellman

equation (note resemblance to 13) - algorithm described in Table 1

vk+1(s)←
∑
a

π(a|s)
∑
s′,r

p(s
′
, r|s, a)

(
r + γvk(s

′
)
)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Dynamic Programming 117

Sunghee Yun Oct 06, 2025

Algorithm - iterative policy evaluation

Inputs: π, MDP
Algorithm parameters: θ > 0 (small threshold determining accuracy of estimation)

Initialize V (s) ∈ R for all s ∈ S except that V (terminal) = 0

Loop:
∆← 0
For each s ∈ S:

v ← V (s)

V (s)←
∑
a π(a|s)

∑
s′,r p(s

′, r|s, a)
(
r + γV (s′)

)
∆← max{∆, |v − V (s)|}

until ∆ < θ

Table 1: Iterative Policy Evaluation for estimating V ∼ vπ

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Dynamic Programming 118

Sunghee Yun Oct 06, 2025

Policy iteration

• iterative process of improving policy to maximize value functions

• algorithm described in Table 2

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Dynamic Programming 119

Sunghee Yun Oct 06, 2025

Algorithm - policy iteration

Inputs: MDP
Algorithm parameters: θ > 0 (small threshold determining accuracy of estimation)
1. Initialization

V (s) ∈ R and π(s) ∈ A(s) for all s ∈ S
2. Policy Evaluation

Loop:
∆← 0
For each s ∈ S:

v ← V (s)

V (s)←
∑
a π(a|s)

∑
s′,r p(s

′, r|s, a)
(
r + γV (s′)

)
∆← max{∆, |v − V (s)|}

until ∆ < θ
3. Policy Improvement
u← true

For each s ∈ S
b← π(s)

π(s)←
∑
a π(a|s)

∑
s′,r p(s

′, r|s, a)
(
r + γvπ(s

′)
)

If b ̸= π(s), then t← false

If u, then stop and return V ∼ v∗ and π ∼ π∗; else go to 2

Table 2: Policy Iteration (using iterative policy evaluation) for estimating π ∼ π∗

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Dynamic Programming 120

Sunghee Yun Oct 06, 2025

Value iteration

• drawback to policy iteration

– each iteration involves policy evaluation

• policy evaluation step can be truncated without losing convergence guarantees

• value iteration

– policy evaluation is stopped after just one sweep by turning Bellman optimality

equation (19) into update rule

– can be written as simple update operation combining policy improvement and

truncated policy evaluation steps

vk+1(s)← max
a∈A

∑
s′,r

p(s
′
, r|s, a)

(
r + γvk(s

′
)
)

• (in-place version of) algorithm described in Table 3

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Dynamic Programming 121

Sunghee Yun Oct 06, 2025

Algorithm - value iteration

Inputs: MDP
Algorithm parameters: θ > 0 (small threshold determining accuracy of estimation)

Initialize V (s) ∈ R for all s ∈ S except that V (terminal) = 0

Loop:
∆← 0
For each s ∈ S:

v ← V (s)

V (s)← maxa∈A(s)
∑
s′,r p(s

′, r|s, a)
(
r + γV (s′)

)
∆← max{∆, |v − V (s)|}

until ∆ < θ

Output: deterministic policy π such that

π(s) = argmaxa∈A(s)
∑
s′,r p(s

′, r|s, a)
(
r + γV (s′)

)

Table 3: Value Iteration for estimating π ∼ π∗

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Dynamic Programming 122

Monte Carlo Methods

Sunghee Yun Oct 06, 2025

Monte Carlo methods

• do not assume complete knowledge of environment

• require only experience sample sequences of states, actions & rewards

– from actual or simulated interaction with environment

• require no prior knowledge of environment’s dynamics

– not complete probability distributions required for DP

– yet can still attain optimal behavior

• simulation can be used

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Monte Carlo Methods 124

Sunghee Yun Oct 06, 2025

Monte Carlo prediction

• (simply) average returns observed after visits to each state

• Monte Carlo (MC) prediction methods - very similar but slightly different theoretical

properties

– first-visit MC method - most widely studied, dating back to 1940s

– every-visit MC method - extends more naturally to function approximation and

eligibility traces

• first-visit MC prediction algorithm described in Table 4

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Monte Carlo Methods 125

Sunghee Yun Oct 06, 2025

Algorithm - first-visit MC prediction

Inputs: π

Initialize:
V (s) ∈ R for all s ∈ S
R(s)← list() for all s ∈ S

Loop:
Generate an episode following π: S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT
G← 0
Loop for each step of episode, t+ T − 1, T − 2, . . . , 0:

G← γG+ Rt+1
If St ̸∈ {S0, S1, . . . , St−1}:

R(St).append(G)
V (St)← R(St).average()

Until a certain criterion is satisfied

Table 4: First-visit MC prediction for estimating V ∼ vπ

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Monte Carlo Methods 126

Sunghee Yun Oct 06, 2025

Monte Carlo control

• proceed according to same pattern as DP, i.e., according to idea of generalized policy

iteration (GPI)

• maintain both approximate policy & approximate value functions

– value functions repeatedly altered to more closely approximate value function for

current policy

– policy repeatedly improved with respect to current value function

• complete simple algorithm, called Monte Carlo with Exploring Starts (ES) described in

Table 5

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Monte Carlo Methods 127

Sunghee Yun Oct 06, 2025

Algorithm - MC ES

Initialize:
π(s) ∈ A(s) for all s ∈ S
Q(s, a) ∈ R for all s ∈ S and a ∈ A(s)
R(s, a)← list() for all s ∈ S and a ∈ A(s)

Loop:
Choose S0 ∈ S, A0 ∈ A(S0) randomly such that all pairs have probability > 0
Generate an episode from S0, A0 following π: S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT
G← 0
Loop for each step of episode, t+ T − 1, T − 2, . . . , 0:

G← γG+ Rt+1
If St ̸∈ {S0, S1, . . . , St−1}:

R(St,At).append(G)
Q(St,At)← R(St,At).average()
π(St)← argmaxa∈A(St)

Q(St, a)

Until a certain criterion is satisfied

Table 5: MC ES for estimating π ∼ π∗

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Monte Carlo Methods 128

Sunghee Yun Oct 06, 2025

Monte Carlo control without exploring starts

• want to avoid unlikely assumption of exploring starts

• only general way to ensure that all actions are selected infinitely often is for agent to

continue to select them

• two approaches to ensure this

– on-policy methods - attempt to evaluate or improve policy used to make decisions

– off-policy methods - evaluate or improve policy different from used to generate data

• on-policy first-visit MC control using ϵ-greedy, not using unrealistic assumption of

exploring starts, described in Table 6

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Monte Carlo Methods 129

Sunghee Yun Oct 06, 2025

Algorithm - on-policy first-visit MC control

Algorithm parameters: small ϵ > 0

Initialize:
π(s) ∈ A(s) for all s ∈ S
Q(s, a) ∈ R for all s ∈ S and a ∈ A(s)
R(s, a)← list() for all s ∈ S and a ∈ A(s)

Loop:
Choose S0 ∈ S, A0 ∈ A(S0) randomly such that all pairs have probability > 0
Generate an episode from S0, A0 following π: S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT
G← 0
Loop for each step of episode, t+ T − 1, T − 2, . . . , 0:

G← γG+ Rt+1
If St ̸∈ {S0, S1, . . . , St−1}:

R(St,At).append(G)
Q(St,At)← R(St,At).average()

A∗ ← argmaxa∈A(St)
For all a ∈ A(St)

π(a|St)←
{

1− ϵ+ ϵ/|A(St)| if a = A∗
ϵ/|A(St)| if a ̸= A∗

Until a certain criterion is satisfied

Table 6: On-policy first-visit MC control (for ϵ-soft policies) for estimating π ∼ π∗

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Monte Carlo Methods 130

Temporal-difference Learning

Sunghee Yun Oct 06, 2025

Temporal-difference (TD) learning

• combination of MC ideas & DP ideas

– like MC, learn directly from raw experience without model of environment’s dynamics

– like DP, update estimates based in part on other learned estimates, without waiting

for final outcome - they bootstrap

• relationship between TD, DP & MC methods - recurring theme in theory of RL

• will start focusing on policy evaluation or prediction problem, i.e., estimating vπ

• control problem (to find optimal policy)

– DP, TD & MC methods all use some variation of generalized policy iteration (GPI)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 132

Sunghee Yun Oct 06, 2025

TD prediction

• both TD & MC use experience to solve prediction problem

• simple every-visit MC method suitable for nonstationary environments

V (St)← V (St) + α(Gt − V (St)) = (1− α)V (St) + αGt

• TD methods wait only until next time step

– at t+ 1, form target and make update using reward Rt+1 & estimate V (St+1)

• TD(0) - one-step TD - simplest TD method

V (St) ← V (St) + α(Rt+1 + γV (St+1)− V (St))

= (1− α)V (St) + α(Rt+1 + γV (St+1)) (21)

– TD(0) is special case of TD(λ) & n-step TD methods

• TD(0) described in Table 7 in procedural form

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 133

Sunghee Yun Oct 06, 2025

Algorithm - TD(0) for estimating vπ

Inputs: the policy π to be evaluated
Algorithm parameters: step size α ∈ (0, 1]

Initialize:
V (s) ∈ R for all s ∈ S except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A← action given by π for S

Take action A, observe R, S′

V (S)← (1− α)V (S) + α(R + γV (S′))
S ← S′

until S is terminal
Until a certain criterion is satisfied

Table 7: TD(0) for estimating vπ.

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 134

Sunghee Yun Oct 06, 2025

TD error

• TD error - quantity in brackets in TD(0) update

δt := Rt+1 + γVt(St+1)− Vt(St) (22)

– difference between estimated value of St & better estimate Rt+1 + γV (St+1)

– arise in various forms throughout RL

• define modified TD error

δ
′
t := Rt+1 + γVt+1(St+1)− Vt(St) (23)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 135

Sunghee Yun Oct 06, 2025

Monte Carlo error

• MC error

– difference between return along path from t to terminal state & state-value function

Gt − Vt(St) =

T−1∑
k=t

γ
k−t
δ
′
k =

T−t−1∑
k=0

γ
k
δ
′
k+t (24)

– can be expressed as sum of discounted (modified) one-step TD errors.

• assuming that every Vt does not change during episode

– δt coincides with δ
′
t

– hence, (24) becomes

Gt − V (St) =

T−1∑
k=t

γ
k−t
δk =

T−t−1∑
k=0

γ
k
δk+t. (25)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 136

Sunghee Yun Oct 06, 2025

MC error - derivation

• MC error

Gt − Vt(St) = Rt+1 + γGt+1 − Vt(St)

= Rt+1 + γ
(
Gt+1 − Vt+1(St+1) + Vt+1(St+1)

)
− Vt(St)

= Rt+1 + γVt+1(St+1)− Vt(St) + γ
(
Gt+1 − Vt+1(St+1)

)
= δ

′
t + γ

(
Gt+1 − Vt+1(St+1)

)
= δ

′
t + γδ

′
t+1 + γ

2
(
Gt+2 − Vt+2(St+2)

)
= δ

′
t + γδ

′
t+1 + γ

2
δ
′
t+2 + · · ·+ γ

T−t−2
δ
′
T−2 + γ

T−t−1 (
GT−1 − VT−1(ST−1)

)
= δ

′
t + γδ

′
t+1 + γ

2
δ
′
t+2 + · · ·+ γ

T−t−2
δ
′
T−2 + γ

T−t−1 (
RT + γVT (ST)− VT−1(ST−1)

)
= δ

′
t + γδ

′
t+1 + γ

2
δ
′
t+2 + · · ·+ γ

T−t−2
δ
′
T−2 + γ

T−t−1
δ
′
T−1

=

T−1∑
k=t

γ
k−t

δ
′
k =

T−t−1∑
k=0

γ
k
δ
′
k+t

where fact that state-value function for terminal state, VT−1(ST), is 0 is used

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 137

Sunghee Yun Oct 06, 2025

Sarsa - on-policy TD Control

• (as in all on-policy methods)

– continually estimate qπ for behavior policy π

– (at the same time) change π toward greediness with respect to qπ

• convergence properties depend on nature of policy’s dependence on Q

– examples of policies - ϵ-greedy or ϵ-soft

• converges with probability 1 to an optimal policy & optimal action-value function as

long as

– all state–action pairs are visited infinite number of times

– policy converges in the limit to greedy policy

• algorithm is described in Table 8

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 138

Sunghee Yun Oct 06, 2025

Algorithm - sarsa for estimating Q ∼ q∗

Algorithm parameters: step size α ∈ (0, 1] and small ϵ > 0

Initialize:
Q(s, a) ∈ R for all s ∈ S and a ∈ A(s) except Q(terminal, ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., ϵ-greedy)
Loop for each step of episode:

Take action A, observe R, S′

Choose A′ from S′ using policy derived from Q (e.g., ϵ-greedy)

Q(S,A)← (1− α)Q(S,A) + α(R + γQ(S′, A′))
S ← S′, A← A′,

until S is terminal
Until a certain criterion is satisfied

Table 8: Sarsa (on-policy TD control) for estimating Q ∼ q∗

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 139

Sunghee Yun Oct 06, 2025

Q-learning - off-policy TD control

• development of off-policy TD control algorithm known as Q-learning (Watkins, 1989) -

one of early breakthroughs in RL

• update defined by

Q(St, At) ← Q(St, At) + α

(
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

)
= (1− α)Q(St, At) + α

(
Rt+1 + γmax

a
Q(St+1, a)

)
• learned action-value function Q directly approximates optimal action-value function q∗,

independent of policy being followed

– dramatically simplifies analysis of algorithm & enabled early convergence proofs

• Q has been shown to converge with probability 1 to q∗

• algorithm described in Table 9

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 140

Sunghee Yun Oct 06, 2025

Algorithm - Q-learning for estimating π ∼ π∗

Algorithm parameters: step size α ∈ (0, 1] and small ϵ > 0

Initialize:
Q(s, a) ∈ R for all s ∈ S and a ∈ A(s) except Q(terminal, ·) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ϵ-greedy)

Take action A, observe R, S′

Q(S,A)← (1− α)Q(S,A) + α(R + γmaxa∈A(S′)Q(S′, a))

S ← S′
until S is terminal

Until a certain criterion is satisfied

Table 9: Q-learning (off-policy TD control) for estimating π ∼ π∗

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Temporal-difference Learning 141

Modern Reinforcement Learning

Sunghee Yun Oct 06, 2025

Deep Q-learning revolution

• problem with classical Q-learning

– limited to small, discrete state spaces

– Q-table becomes intractable for complex environments

– cannot handle high-dimensional inputs, e.g., images, continuous states

• deep Q-networks (DQN)

– replace Q-table with deep neural network (DNN)

– DNN approximates action-value function Q(s, a)

– handle raw pixel inputs, continuous states

– enables RL in complex environments, e.g., Atari games, robotics

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Modern Reinforcement Learning 143

Sunghee Yun Oct 06, 2025

DQN architecture & key innovations

• experience replay

– store transitions (s, a, r, s′) in replay buffer & sample mini-batches for training

– break correlation between consecutive samples to improve data efficiency and stability

• target network

– separate target network for computing TD targets being updated periodically

– reduce correlation between Q-values & targets to improve training stability

• DQN loss function

L(θ) = E((r + γmax
a′

Q(s
′
, a
′
; θ
−
)−Q(s, a; θ))

2

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Modern Reinforcement Learning 144

Sunghee Yun Oct 06, 2025

Policy gradient methods

• limitations of value-based approaches

– indirect policy optimization

– difficulty with continuous action spaces

– may not find stochastic optimal policies

• policy gradient methods

– direct policy optimization & natural handling of continuous actions

– can learn stochastic policies & better convergence properties (in some cases)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Modern Reinforcement Learning 145

Sunghee Yun Oct 06, 2025

Policy gradient algorithm

• merit cuntion - J(θ) = E(V (S0)|πθ) = E
(∑∞

t=0 γ
tRt

∣∣πθ)
• maximization problem formulation

maximize J(θ)

subject to θ ∈ Θ

• REINFORCE algorithm

θ
k+1

= θ
k
+ α

k∇J(θk)
where

∇θJ(θ) = E(∇θ log π(a|s; θ)Qπ
(s, a))

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Modern Reinforcement Learning 146

Sunghee Yun Oct 06, 2025

Q-learning vs policy gradients

• Q-learning

– does not always work

– usually more sample-efficient (when it works)

– challenge - exploration

– no guarantee for convergence

• policy gradients

– very general, but suffers from high variance

– requires lots of samples

– converges to local minima of J(θ)

– challenge - sample-efficiency

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Modern Reinforcement Learning 147

AlphaGo & AlphaGo Zero Technologies

Sunghee Yun Oct 06, 2025

AlphaGo

• Go board marked with 19×19 grid - (19× 19)! = 361! ≈ 1.44× 10768

1437923258884890654832362511499863354754907538644755876127282765299227795534389618856841908003141196
0714137944348905859683839682333043216077138088370565578796691924861827097800358990211005794501073330
5079262777172275041226808677528136885057526541812043502150623466302643442673632627092764643302557772
2695595343233942204301825548143785112222186834487969871267194205609533306413935710635197200721473378
7338269803085351043174203653673779887217565513450041291061650506154496265581102824241428406627054585
5623101563752892899924857388316647687165212001536218913733713768261861456295440900774337589490771443
9917299937133680728459000034496420337066440853337001284286412654394495050773954560000000000000000000
000

• deep reinforcement learning with Monte Carlo tree search

– trained on thousands of years of Go game history

– AlphaGo Zero learns by playing against itself

• development experience, insight, knowledge, know-how transferred to AlphaFold

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - AlphaGo & AlphaGo Zero Technologies 149

Sunghee Yun Oct 06, 2025

AlphaGo - hybrid approach - 2016

• components

– policy network - predicts human expert moves

– value network - evaluates board positions

– Monte Carlo tree search (MCTS) - explores game tree

– rollout policy - fast playouts for MCTS

• training process

– supervised learning - train policy network on human games

– RL - improve policy through self-play

– regression - train value network on self-play positions

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - AlphaGo & AlphaGo Zero Technologies 150

Sunghee Yun Oct 06, 2025

AlphaGo Zero - pure RL revolution - 2017

• breakthrough - no human knowledge

– learns from scratch through self-play, no human game data or handcrafted features

– much stronger than original AlphaGo

• simplified architecture

– single neural network with two heads - policy head π(a|s) & value head v(s)

• key innovations

– residual NN - enable very deep networks

– MCTS with NN - perfect integration

– self-play curriculum - gradually increasing difficulty

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - AlphaGo & AlphaGo Zero Technologies 151

Modern RL Applications & Industry Examples

Sunghee Yun Oct 06, 2025

Autonomous systems

• Waymo - Google

– RL for trajectory planning and decision making

– Simulation-based training with millions of scenarios

– Integration with traditional planning algorithms

• Tesla Autopilot

– RL for lane changes and complex driving scenarios

– Real-world data collection and training

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Modern RL Applications & Industry Examples 153

Sunghee Yun Oct 06, 2025

Gaming & entertainment

• OpenAI Five for playing Dota 2

– complex multi-agent environment

– long-term planning (45+ minute games)

• DeepMind AlphaStar for playing StarCraft II

– league-based training, population-based methods

– partial observability challenges

– human-level performance

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Modern RL Applications & Industry Examples 154

Sunghee Yun Oct 06, 2025

Robotics

• Boston Dynamics

– RL for dynamic locomotion

– sim-to-real transfer

– robust control policies

• Covariant - warehouse automation

– RL for robotic picking and manipulation

– real-world deployment in warehouses

– continuous learning from experience

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Modern RL Applications & Industry Examples 155

Sunghee Yun Oct 06, 2025

Finance & trading

• JP Morgan Chase

– algorithmic trading with RL

– portfolio optimization

– risk management

• Two Sigma, Renaissance Technologies

– market making and execution

– multi-agent trading environments

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - Modern RL Applications & Industry Examples 156

LLM & RL

Sunghee Yun Oct 06, 2025

RLHF - RL from human feedback

• ChatGPT, GPT-4 training pipelines

– supervised fine-tuning - train on human demonstrations

– reward model training - learn human preferences

• key components

– reward model - predicts human preferences

– KL penalty - prevents deviation from original model

– constitutional AI - self-improvement through AI feedback

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - LLM & RL 158

Sunghee Yun Oct 06, 2025

Applications in LLMs

• OpenAI - ChatGPT/GPT-4

– RLHF for helpful, harmless, honest responses

– massive scale PPO training

– human preference learning

• Anthropic - Claude

– constitutional AI methods

– self-supervised preference learning

– scalable oversight techniques

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - LLM & RL 159

RL Evolution

Sunghee Yun Oct 06, 2025

Classical to modern RL

• key progressions

– tabular→ function approximation→ DNN / model-free→ model-based→ hybrid

– single agent→ multi-agent→ large-scale systems

• core principles intact

– exploration vs exploitation trade-off / Bellman equations & Bellman optimality

– policy improvement & evaluation / generalized policy iteration (GPI)

• modern additions

– scale and compute power / human feedback integration

– safety & robustness considerations / multi-modal and foundation models (e.g., LLM)

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Reinforcement Learning - RL Evolution 161

Selected References & Sources

Sunghee Yun Oct 06, 2025

Selected references & sources

• Robert H. Kane “Quest for Meaning: Values, Ethics, and the Modern Experience” 2013

• Michael J. Sandel “Justice: What’s the Right Thing to Do?” 2009

• Daniel Kahneman “Thinking, Fast and Slow” 2011

• Yuval Noah Harari “Sapiens: A Brief History of Humankind” 2014

• M. Shanahan “Talking About Large Language Models” 2022

• A.Y. Halevry, P. Norvig, and F. Pereira “Unreasonable Effectiveness of Data” 2009

• A. Vaswani, et al. “Attention is all you need” @ NeurIPS 2017

• S. Yin, et. al. “A Survey on Multimodal LLMs” 2023

• Chris Miller “Chip War: The Fight for the World’s Most Critical Technology” 2022

• CEOs, CTOs, CFOs, COOs, CMOs & CCOs @ startup companies in Silicon Valley

• VCs on Sand Hill Road - Palo Alto, Menlo Park, Woodside in California, USA

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - Selected References & Sources 163

References

Sunghee Yun Oct 06, 2025

References

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, New York, NY, USA, 2004.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT

Press, 2016.

[HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and

Techniques - Adaptive Computation and Machine Learning. The MIT Press,

2009.

[LG94] Alberto Leon-Garcia. Probability and Random Processes for Electrical

Engineering. Addison-Wesley, 2nd edition, 1994.

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - References 165

Sunghee Yun Oct 06, 2025

[Mur12] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT

Press, 2012.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. Bradford Books, 2nd edition, 2018.

[KICSV Special AI Lecture] Mathematics for AI - Theory into Practice - References 166

Thank You

